Design of Earthing System for a Substation: A Case Study

O.P. Rahi¹, Abhas Kumar Singh², Shashi Kant Gupta³, Shilpa Goyal⁴

Electrical Engineering Department, National Institute of Technology, Hamirpur, India¹,²,³,⁴
oprahi2k@gmail.com¹, abhasnith@gmail.com², skgsrmscet@gmail.com³, shilpa.nith@gmail.com⁴

Abstract

This paper presents the design of earthing system for 132 KV substation and simulation for calculation of required parameters. This paper is to provide information pertinent to safe earthing practices in ac substation design and to establish the safe limits of potential difference under normal and fault conditions. The grounding grid system of a practical 220 kV substation is calculated by MATLAB program. The supporting data has been obtained from actual field tested at the substation. Standard equations are used in the design of earthing system to get desired parameters such as touch and step voltage criteria for safety, earth resistance, grid resistance, maximum grid current, minimum conductor size and electrode size, maximum fault current level and resistivity of soil. By selection the proper horizontal conductor size, vertical electrode size and soil resistivity, the best choice of the project for safety is performed. This paper mentions the calculation of the desired parameters which are simulated by MATLAB program. Some simulated results are evaluated.

Keywords

component; Safe earthing system, Grounding, resistivity, AC substation, MATLAB program, Flowchart

1. Introduction

In substation earthing system is essential not only to provide the protection of people working in the vicinity of earthed facilities and equipments against danger of electric shock but to maintain proper function of electrical system. Reliability and security are to be taken in considerations as well as adherence to statutory obligations (IEEE and Indian standards on electrical safety [1-2] and environmental aspects). Earthing system thus design must be easily maintained and future expansion must be taken into account while designing the dimensions of earth mat.

This paper is concerned with earthing practices and design for outdoor AC substation for power frequency in the range of 50 Hz. DC substation GIS and lightening effects are not covered in this paper. With proper caution, the method described here is also applicable to indoor portion of such substation. By using proper conductor and electrode size, earthing system may be able to overcome lightening effects.

2. Earthing system for a substation

A. Components of earthing system

An effective substation earthing system typically consists of earth rods, connecting cables from buried earthing grid to metallic parts of structures and equipments, connections to earthed system neutrals, and the earth surface insulating covering material briefly discussed in [1,3]. Current flowing into the earthing grid from lightening arrester operation impulse or switching surge flashover of insulators and line to ground fault current from the bus or connected transmission lines all cause potential differences between earthed points in the substation. Without a properly designed earthing system, large potential differences can exist between different points within the substation itself. Under normal circumstances, it is the current constitutes the main threat to personal.

B. Data needed for design of earthing

- Substation grid area
- Soil resistivity at the site
- Fault clearing time
- Maximum grid current
- Resistivity of soil at surface

C. Factors on which design of earthmat depends

- Materials used for earth electrodes and conductors must be chosen carefully taking into account physical, chemical and economical constraints. Ground conductor must be adequate for fault current (considering corrosion). Basic requirements are thoroughly studied in paper [4].
- Conductor sizing depends on fault current and conductivity as well as mechanical strength of material used.
- Resistivity of soil and surface layer determines the STEP and TOUCH potentials, which
determine safe values of operation as described in reference [1, 5-9]. Also the multilayer resistivity has been a subject of continuous attention by the researchers [10-13].

- A good grounding system provides a low resistance in order to minimize GPR (ground potential rise)[14].
- Grid geometry is a major factor in determining the step, touch and mesh potential contours and current distribution in grid. The limitations on the physical parameters of a ground grid are based on economics and the physical limitations of the installation of the grid.

D. Fault Clearing Time

The faults clearing time is governed by system stability consideration and depend on protection and switchgear equipment. Generally a value of 0.5 seconds is assumed. The size of the conductor is based on a time of 1 second.

E. Determination of Maximum Grid Current

A single line to ground fault is more common and causes more fault current as compared to a double line to ground fault. Therefore, the design is based on single line to ground fault current. For calculation of this current grid resistance and fault resistance are assumed to be zero. Then

\[I_g = S_f I_f \]

Where

- \(I_g \) = symmetrical grid current, Amp
- \(I_f \) = rms value of symmetrical ground fault current, Amp
- \(S_f \) = current division factor relating the magnitude of fault current to that of its portion flowing in the earthing grid.

Only a part of the total fault current flows through the grid. The remaining current flows through the overhead ground wires and other ground return paths. The factor \(S_f \) gives this current division and can be calculated, if the system data is known, from the value of \(I_g \) the design value of grid current is found as

\[I = G_f D_f I_g \]

Where

- \(I \) = maximum grid current
- \(G_f \) = A factor to account for increase in fault current due to system growth during life span of grid.
- \(D_f \) = Decrement factor to account for asymmetry of the fault current wave.

Typical values of \(G_f \) assumed in design, lie in the range of 1.2 to 1.5 depending on the rate of growth of the system.

F. Selection of Electrode material

The material for grounding grid should have good conductivity, be mechanically rugged and resist fusing and deterioration of joints. Copper was very commonly used in the past. It has high conductivity and is resistant to underground corrosion. However, a grid of copper forms a galvanic cell with other buried structure and pipes and is likely to hasten the corrosion of the latter. Aluminium is not used because of corrosion problem.

3. Mathematical Description

G. Safe limits and values of potentials

The safety of a person depends on preventing the critical amount of shock energy from being absorbed. The maximum driving voltage of any accidental circuit should not exceed the limits defined as follows.

The tolerable step voltage criteria is

\[E_{step} = \frac{(1000 + 6C_s \rho_s).116}{\sqrt{t_s}} \]

The tolerable touch voltage criteria is

\[E_{touch} = \frac{(1000 + 1.5C_s \rho_s).116}{\sqrt{t_s}} \]

Where

- \(C_s = 1 \) for no protective surface layer
- \(\rho_s \) = the resistivity of the surface material in A-m
- \(t_s \) = duration of shock circuit in seconds

The minimum conductor size formula is mentioned below-

\[A_{min}^2 = 1 \times \frac{b - 2\sqrt{2} \times 2 \times 10^4 \times TCAP}{\ln[1 + \frac{2K_o}{K_o + 1}]} \]

Where

- \(K_o = 1/\alpha_o \) or \(1/\alpha_o \cdot T \)
- \(t_c \) = time of current flow in sec
- TCAP = thermal capacity factor

For grounding resistance, the following formula is used

\[R = \rho \left[\frac{1}{L} + \frac{1}{\sqrt{20A}} \left(1 + \frac{1}{h \sqrt{20A}} \right) \right] \]

Where

- \(\rho \) = soil resistivity
- \(L \) = total length of grid conductor
- \(A \) = total area enclosed by earth grid
- \(h \) = depth of earth grid conductor

For calculation of grid current, equation (5) is used
\[I_g = S_f \times 3I_o \quad \ldots \quad (5) \]

Where

\[I_g = \text{maximum grid current} \]
\[3I_o = \text{symmetrical fault current in substation for Conductor sizing in A} \]
\[S_f = \text{current diversity factor} \]

Equation (6) is expressed for grid potential rise (GPR)

\[\text{GPR} = I_g R_g \quad \ldots \quad (6) \]

Maximum attainable step and touch voltages are given by:

Formula for calculation of mesh and step voltage are

\[E_m = \frac{\rho K_m K_i I_g}{L} \quad \ldots \quad (7) \]

\[E_m = \frac{\rho K_m K_i I_g}{L} \quad \ldots \quad (8) \]

Where

\[\rho = \text{soil resistivity, ohms-m} \]
\[E_m = \text{mesh voltage at the center of corner mesh} \]
\[E_s = \text{step voltage between point} \]
\[K_m = \text{spacing factor for mesh voltage} \]
\[K_i = \text{spacing factor of step voltage} \]
\[K_i = \text{correct factor for grid geometry} \]

\[K_{m_{n}} = \frac{1}{2n} \left[\ln \left(\frac{D^2}{16hd^2} \right) + \frac{1}{4d} \right] + \frac{K_{h_{n}}}{K_{h_{n}}} \ln \left(\frac{8}{(2n-1)} \right) \quad \ldots \quad (9) \]

Where

\[D = \text{spacing between conductor of the grid} \]
\[d = \text{diameter of grid conductor} \]
\[K_m = \text{spacing factor for mesh voltage} \]
\[K_h = 1 \text{ for grids with rods along perimeter} \]
\[K_h = \text{Corrective weighting factor for grid depth} \]

\[K_d = \frac{1}{n} \left[\frac{1}{2h} + \frac{1}{(D + h)} + \frac{1}{D} (1 - 0.5^{n-2}) \right] \quad \ldots \quad (10) \]

Where

\[D = \text{spacing between conductor of the grid} \]
\[h = \text{depth of burial grid conductor} \]
\[n = \text{number of parallel conductor in one direction} \]

The length required to keep mesh voltage within safe limits, can be calculated by

\[L = \frac{\rho \times K_m \times K_{h_{n}} \times I_{g}}{(1000 + 1.5 \times p \times D \times 0.116)} \quad \ldots \quad (11) \]

If the length of conductor in the Preliminary design is less than that given eqn. (11) a revision in design is necessary.

\[H. \quad \text{Design procedure} \]

Values of maximum attainable touch voltages are calculated. If the GPR of the preliminary design is below the tolerable touch voltage, no further analysis is necessary. Only additional conductor required to provide access to equipment grounds is necessary.

If the computed mesh voltage is below the tolerable touch voltage, the design may be complete. If the computed mesh voltage is greater than the tolerable touch voltage, the preliminary design should be revised. If both the computed touch and step voltages are below the tolerable voltages, the design needs only the refinements required to provide access to equipment grounds. If not, the preliminary design must be revised.

Further for the safe design we need to compare the length of the electrode in the preliminary design to the length of the electrode required to keep mesh voltage within safe limits

If either the step or touch tolerable limits are exceeded, revision of the grid design is required. These revisions may include smaller conductor spacing, additional ground rods, and use of closer spacing of conductor. In case the length given by eqn. (11) is too small to allow for connections to all equipments, more conductor may be required even though it is not necessary for safety etc as discussed in reference [1].

If the length of the conductor in the preliminary design is less than the length required to keep mesh voltage within safe limits, then the design needs to be revised by entering more number of electrodes or by decreasing spacing between the conductors, otherwise the design is accurate. Further, if the Ground Potential Rise (R*Ig) is less than the tolerable value of touch potential then the design of the electrical grid is considered to be safe otherwise we need to guard personnel and other communication equipment against transferred potential.

Checking of step Potential:-

The tolerable step potential and actual step potential can be calculated from eqn (1) and eqn (8). If actual step potential is more than tolerable, a revision in design is necessary. The final step in design includes provision of closer meshes in the area frequently visited by operating personnel; additional ground rods for surge arrester leads, etc., and provision of risers for connection to equipments.

\[\text{Impulse behaviour of earthing system:} \]

The degree of protection provided by an earthing system under lightning discharge conditions depends on its impulse impedance (i.e.,impedance under impulse conditions) and not the power frequency resistance. The impulse impedance is different from the power frequency resistance due to effect of 1st soil ionization 2nd electrode inductance.
When the magnitude of impulse current is high, the soil in the vicinity of electrode may break-down causing a decrease in resistance. When the length of electrode is large, its inductance may cause only a part of the earthing system to be effective in dissipating current and, thus result in an increase in impedance.

The relative contributions of these two factors depend on the type of earthing system. The effect of soil ionization is very predominant in driven rods so that the impulse resistance of a driven rod is always less than its power frequency resistance.

The whole procedure can be shown by this flowchart:

```
Input Network topology ρ, A

Compute of Network Conductor ρo, tc, d

Compute of Touch and Step Voltage Etouch, Estep

Initial design D, n, L, h

Grid Resistance Rg, Lc, Lr

Grid current IG, tf

IG.Rg < Etouch

Compute of Real Network voltages Em, Es, Km, Ks, Kii, Kh

Em < ETouch

Em < EStep

NO

NO

YES

YES

Modify design D, n, L, h

Evaluate Design and its Details Studies

Table I

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>T_a</td>
<td>40</td>
</tr>
<tr>
<td>Maximum allowable</td>
<td>T_m</td>
<td>620</td>
</tr>
<tr>
<td>temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault duration time</td>
<td>t_s</td>
<td>1s</td>
</tr>
<tr>
<td>Thermal coefficient of</td>
<td>α_r</td>
<td>0.0042</td>
</tr>
<tr>
<td>resistivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistivity of conductors</td>
<td>ρ_r</td>
<td>15</td>
</tr>
<tr>
<td>Resistivity of substation</td>
<td>ρ</td>
<td>220</td>
</tr>
<tr>
<td>soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistivity of surface</td>
<td>ρ_s</td>
<td>3300</td>
</tr>
<tr>
<td>material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal capacity factor</td>
<td>TCAP</td>
<td>3.7490</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth conductor size</td>
<td>A_c</td>
<td>376.257</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Maximum grid current</td>
<td>I_G</td>
<td>15750</td>
</tr>
<tr>
<td>Ground resistance</td>
<td>R_g</td>
<td>0.9646</td>
</tr>
<tr>
<td>Ground potential rise</td>
<td>GPR</td>
<td>1512</td>
</tr>
<tr>
<td>Spacing factor for mesh</td>
<td>K_m</td>
<td>0.2244</td>
</tr>
<tr>
<td>voltages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacing factor for step</td>
<td>K_s</td>
<td>0.4338</td>
</tr>
<tr>
<td>voltages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Touch voltage criteria</td>
<td>E_touch</td>
<td>689.97</td>
</tr>
<tr>
<td>Step voltage criteria</td>
<td>Estep</td>
<td>2267.72</td>
</tr>
<tr>
<td>Maximum attainable step</td>
<td>E_s</td>
<td>1453.93</td>
</tr>
<tr>
<td>voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum attainable</td>
<td>E_m</td>
<td>581.61</td>
</tr>
<tr>
<td>mesh voltage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Result

These results are obtained by a MATLAB program.

Fig 1. Design procedure
The step and touch voltages are dangerous for human body. Human body may get electric shocks from step and touch voltages. From the safety point of view it is necessary to calculate step and touch voltage. When high voltage substations are designed step and touch voltages should be calculated and must be in specified standard. The expected shock current caused by touch voltage can be effectively limited by applying inexpensive insulating layers on the earth’s surface. The limits of step and touch potentials varies in different seasons because the resistivity of the soil layer is affected by different seasons. The step and touch voltage calculations are very significant while designing substation.

6. Conclusion

This paper has a focus on designing of an AC substation. The results for earthing system design are obtained by MATLAB program for earthing conductor and vertical earth electrode mild steel is used.

ACKNOWLEDGEMENT

The author wish to thank Er. O. P. Rahi for his guidance and moral support provided during this research effort, and Dr. M.G.Sharma for helping with substation data.

References


**Om Prakash Rahi** was born in Kullu (H.P.), India. He received the B.Tech. degree from REC Hamirpur (HP), India, in 1992, and the M.E. degree in Electrical Power Systems from Punjab Engineering College, Chandigarh, in 1997. He joined Government Polytechnic, Sundernagar (HP) as Lecturer in 1997. Since 2000, he has been working as Lecturer in the Electrical Engineering Department, National Institute of Technology, Hamirpur, H.P., and India. He has published a number of research papers. His research interests are in the area of Condition Monitoring of Power Transformers, Deregulation of Power and Hydro Power Development.

**Abhas Kumar Singh** was born in Ambikapur (Surguja) C.G., India. He received the 3 year Diploma in Electrical Engg. from Govt. Polytechnic College Ambikapur India, in 2007 and the B.Tech. degree in Electrical and Electronics Engineering from Shri Shankaracharya College of Engg. & Tech. Bilai, India, in 2010. He is currently pursuing the M.Tech. degree in Power System from National Institute of Technology, Hamirpur.

**Shashi Kant Gupta** was born in Obra (Uttar Pradesh), India. He received the B.Tech. degree in Electrical and Electronics Engineering from S.R.M.S.C.E.T. Bareilly (UP), India, in 2010. He is currently pursuing the M.Tech. degree in Power System from National Institute of Technology, Hamirpur.

Shilpa goyal was born in Chandigarh . She received the B.Tech. degree in Electrical and Electronics Engineering from NIT Hamirpur in 2010. She is currently working in Infosys.